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This document is formal documentation for the CGAUtil Lua module,
supplementary to the GALua module. Here in is explained the mathematics
used by the CGAUtil module to compose and decompose each geometric
primitive of 3-dimensional CGA, the conformal model of geometric algebra
for 3-dimensional euclidean space. It is assumed the reader is already familiar
with CGA. In this document we let the outer product take precedence over
the inner product, and the geometric product take precedence over the inner
and outer products.

It should be noted that the CGA system is patented by David Hestenes,
Hongbo Li, et. al.

1 Composition

We begin with an explanation of the composition of each geometric primitive.
The geometric primitives of CGA are listed in Table 1, along with the param-
eters characterizing each geometry.1 Each geometry can be represented in a
direct or dual form. Table 2 lists each geometry again, this time giving the
grade of blade representing each geometrying in dual form. This table is not
a comprehensive listing for each grade. For example, the null pseudo-vectors
of CGA are also dually representative of points. The table does, however,
completely describe the CGAUtil module’s choice of which grades of blades
it uses to dually represent the geometric primitives of CGA.

1The reader may notice that tangent points and free blades are missing from Table 1.
As points are simply degenerate spheres, tangent points arrise as the degenerate point-
pairs and circles. Free blades are the intersection of distinct and parallel planes. Tangent
points and free blades are, as of this writing, not explicitly supported, but only implicitly
in the form of these special cases.
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weight center normal radius real/imaginary
point yes yes no no no

flat-point yes yes no no no
point-pair yes yes yes yes yes

line yes yes yes no no
circle yes yes yes yes yes
plane yes yes yes no no
sphere yes yes no yes yes

Table 1: The parameters characterizing each CGA geometry.

grade 1 grade 2 grade 3
point circle point-pair
sphere line flat-point
plane

Table 2: CGAUtil’s grades for dual geometries.

The composition (and decomposition) of each CGA geometry is given in
terms of its dual form, because such a form naturally presents the parameters
(the columns of Table 1) characterising each geometry (a row of Table 1) more
so than seems to be the case with the direct form.

For the compositions (and decompositions) of this document, we will let
the variables w, c, n and r denote the weight, center, normal and radius
of each geometry, respectively. Each of w and r are scalars while each of c
and n are euclidean vectors. The normal vector n is always of unit-length.
We always require r ≥ 0. Then, letting {e1, e2, e2, o,∞} be a set of basis
vectors generating the vector space V that in turn generates the geometric
algebra G, and letting I denote the unit-pseudo scalar of G and i denote the
unit-pseudo scalar of the largest euclidean geometric sub-algebra of G, we
can now procede to give the composition of each geometry.
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1.1 Point Composition

A point ρ, being characterized by a weight w and center c, is given by

ρ = w

(
o+ c+

1

2
c2∞

)
. (1)

1.2 Sphere Composition

A sphere σ, being characterized by a weight w, center c and radius r, is given
by

σ = w

(
o+ c+

1

2
(c2 − sr2)∞

)
, (2)

where s is a scalar being 1 or −1. We have s = 1 in the case that σ is a real
sphere, and s = −1 in the case that σ is an imaginary sphere.

1.3 Plane Composition

A plane π, being characterized by a weight w, center c and normal n, is given
by

π = w (n+ (c · n)∞) . (3)

1.4 Circle Composition

A circle γ, being characgterized by a weight w, center c, normal n and radius
r, is given by

γ = w

(
o+ c+

1

2
(c2 − sr2)∞

)
∧ (n+ (c · n)∞) (4)

= w

(
o ∧ n+ (c · n)o ∧∞+ c ∧ n+

(
(c · n)c− 1

2
(c2 − sr2)n

)
∧∞

)
,

(5)

where s is a scalar being 1 or −1. We have s = 1 in the case that γ is a real
circle, and s = −1 in the case that γ is an imaginary circle. Our choice to
multiply the sphere left of the plane in the outer product is arbitrary, but a
choice warrenting documentation as this affects the sign of w.
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1.5 Line Composition

A line λ, being characterized by a weight w, center c and normal n, is given
by

λ = w (n+ (c ∧ n)∞) i. (6)

1.6 Point-Pair Composition

A point-pair β being characterized by a weight w, center c, normal n and
radius r, is given by

β = w

(
o+ c+

1

2
(c2 − sr2)∞

)
∧ (n+ (c ∧ n)∞)i (7)

= w

(
o ∧ n+ c ∧ n ∧ o ∧∞+ c · n−

(
(c · n)c− 1

2
(c2 + sr2)n

)
∧∞

)
i,

(8)

where s is a scalar being 1 or −1. We have s = 1 in the case that β is a real
point-pair, and s = −1 in the case that β is an imaginary piont-pair. Our
choice to multiply the sphere left of the line in the otuer product is arbitrary,
but a choice warrenting documentation as this affects the sign of w.

1.7 Flat-Point Composition

A flat-point φ, being characterized by a weight w and center c, is given by

φ = w(n+ (c · n)∞) ∧ (n+ (c ∧ n)∞)i (9)

= w(1− c ∧∞)i, (10)

where here the unit-length normal n cancels. Our choice to multiply the
plane left of the line is arbitrary, but a choice warrenting documentation as
this affects the sign of w.

2 Decomposition

Decomposition begins with a treatment of identification. In CGA, it is pos-
sible to show that the blades dually representative of real non-degenerate
rounds are also directly representative of imaginary rounds. Given such a
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blade, CGAUtil resolves the ambiguity in its identification as a specific geo-
metric primitive of CGA by always choosing the dual interpretation. CGAU-
til, therefore, only provides decomposition methods that interpret blades as
being dually representive of CGA geometries. An attempt to decompose the
geometry directly reppresented by a given blade can then be performed by
simply applying a CGAUtil decomposition method to one of its duals.

A given decomposition method attempts to decompose a given blade un-
der the assumption that it is of a specific dual form (i.e., the dual forms
found in previous section on composition.) Such an attempt will either pass
or fail. The decomposition methods are designed to fail if and only if the
given blade simply does not represent the assumed geomtric type. It follows
that the identification of what geometries are dually represented by a given
blade are found by simplying attempting to apply, in any order, the set of all
decomposition methods approriate to the grade of that blade. A convenience
routine has been provided by CGAUtil that performs this analysis on a given
blade. More than one geometric type may be identified in certain cases (e.g.,
in the case of a degenerate sphere, this is also a point.)

2.1 Point Decomposition

A point ρ, given in equation (1), may be decomposed as follows.

w = −ρ · ∞ (11)

c = o ∧∞ · ρ
w
∧ o ∧∞ (12)

If the weight w is zero, the decomposition fails. Furthermore, to insure
a correct decomposition, the validity of the following equation should be
checked.

−2o · ρ
w

= c2 (13)

The decomposition also fails if this equation is not satisified.

2.2 Sphere Decomposition

A sphere σ, given in equation (2), may be decomposed as follows.

w = −σ · ∞ (14)

c = o ∧∞ · σ
w
∧ o ∧∞ (15)
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If the weight w is zero, the decomposition fails. Realizing that s−1 = s, the
radius r may be found as

r2 = s
(
c2 + 2o · σ

w

)
, (16)

where here we may choose s = 1 or s = −1 so that r2 ≥ 0.

2.3 Plane Decomposition

A plane π, given in equation (3), may be decomposed as follows.

w = |o · π ∧∞| (17)

n = o · π
w
∧∞ (18)

If the weight w is zero, the decomposition fails.
Then, assuming c ∧ n = 0, we may write

c = −
(
o · π

w

)
n. (19)

Such an assumption is necessary, because the center of a plane is arbitrary
and not recoverable from composition. Our choice of center c here gives us
a position on the plane closest to the origin.

Notice that the sign of the weight w is also lost in composition, and
therefore unrecoverable in decomposition. The weight calculated here always
satisfies the condition w > 0.

Also notice that the results of the above decomposition steps are consid-
ered undefined in the case that π · ∞ 6= 0. For this reason, before any steps
are taken, we fail under this condition.

2.4 Circle Decomposition

A circle γ, given in equation (5), may be decomposed as follows.

w = |o ∧∞ · γ ∧∞| (20)

n = −o ∧∞ · γ
w
∧∞ (21)
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If the weight w is zero, the decomposition fails. Like the plane, here, the
weight w and normal n are recovered only up to sign. That we are able to
recover the center c follows from cancellation of sines.

c = −n
(
o ∧∞ · γ

w
∧ o∞

)
. (22)

Realizing that s−1 = s, the radius r may be found as

r2 = s
(
c2 − 2

(
o ∧∞ · o ∧ γ

w
+ (c · n)c

)
n
)
, (23)

where here we may choose s = 1 or s = −1 so that r2 ≥ 0.

2.5 Line Decomposition

A line λ, given in equation (6), may be decomposed as follows.

w = |(o · λ ∧∞)i| (24)

n =

(
o · λ

w
∧∞

)
i (25)

If the weight w is zero, the decomposition fails.
Then, assuming c · n = 0, we may write

c =

((
o · λ

w

)
n

)
i. (26)

Like planes, the center c is lost in composition. Our choice of c here is a
position on the line closest to the origin.

Also like the plane, here our decomposition is undefined, and therefore
fails, in the case that λ · ∞ 6= 0.

2.6 Point-Pair Decomposition

A point-pair β, given in equation (8), may be decomposed as follows.

w = |(o ∧∞ · β ∧∞)i| (27)

n = −
(
o ∧∞ · β

w
∧∞

)
i (28)
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The decomposition fails if the weight w is zero.
Like the circle, cancellation of sines allows us to recover the center c as

c = −n
(
o ∧∞ · β

w
∧ o∞

)
i. (29)

Realizing that s−1 = s, the radius r may be found as

r2 = s

(
−c2 + 2

((
o ∧∞ · o ∧ β

w

)
i+ (c · n)c

)
n

)
, (30)

where here we may choose s = 1 or s = −1 so that r2 ≥ 0.

2.7 Flat-Point Decomposition

A flat-point φ, given in equation (9), may be decomposed as follows.

w = −(o · φ ∧∞)i (31)

c =

(
o · φ

w

)
i (32)
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